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This paper describes a feed forwarxj  r~cu al net a[)proach for detection of abnormal

system behavior based upcm swmr (Ma analyses. A nc!w dynamical invariant

representing structural partimcdctrs  of tl m system is introdu~ed  in such a way that

any structural abnormalities irl lIIc: system behavior are detected from the

corresponding changes to the ir wari:]nt  Potential for application of this approach

is discussed by analysis of Iewl(s  fi wn t(!lernetry  rncmitc)ring  of spacecraft systems

for NASA interplanetary operations.



1. Introduction

Sensor data is a koy soLIr’ce c~f infcmnation concerning the state and

operational perforrnancx  of tl~c: w tdc( I yir ig system. When this data is presented in

the form of a time series, twc) im~ u IaI d [wobloms cxm be posed: a) predicting future

values of a time series from c:wr enl arm’ ~ last values, and b) detection of abnormal

behavior in the underlyin~ systetI]. It I most c)f the existing methodoIogies[l’2],  a

solution to the second prchlmrr  is txwed upon the solution to the first one:

abnormal k}ehavior is detecteci  by ;lnnlysis of the difference between the recorded

and the expected/predicted VdLIOS clf the time serie$. Usually such an analysis is

based upon comparing certain p:itt~,.n  M such as the average value, average slope,

average noise level, the peric)d at ]d I tlase c)f oscillations, and the frequency

spectrum. Although all those ctl:lr:~ct[’ristics  may have some physical meaning

when a time series represwlts  a c{:;t [air] message in signal processing, they can

change sharply in time whorl a tirtw series describes the evcdution  of an underlying

dynamical system such as Itw [rower system  of a spacxmraft  or the catalytic

converter of a car. Indeed, in tt m Mtcr (xwes, a time series does not transmit any

“man-made” message, and thcroforc, ii may trove different dynamical invariant,

In other words, it is reasonable to a:.s[,m~  that wtwn a lime series is describing the

evolution of a dynamical syst~mll its invariant can be represented by the

coefficients of the differential (c)r !Ile tllne-delay)  equation which simulates the’

dynamical process. Based ulmtl tl~is idea, we have developed the following

strategy for detection of structural al mom Ialities:  a) build a dynamical model which

simulates a given time series, l)) cicNt!lop  dynamical invariants whose change

manifests structural abnornlalitios.
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2. Dynamical Mode!

In this paper we deal wi[l I II w sw Isor data in the fcm of a time series which

describes the evolution of an undo; iying ciynamicxd  system. It will be assumed that

this time series can not bc: a p~ mv:i~nat  cd by a simple analytical expression, and

therefore, it can be consid~red  as a rcal~zation  of an underlying stochastic process

which can be described orlly iri t(m I IS (d’ a probability distribution. However, any

information about this distributiorl  {;<r ~ rlat be obtained from a simple realization of

a stochastic process unless ttlis ~)ro(:ess  is stationary. (Then averaging over

ensemble can be replaced t )y aver: ~ging over time))., Elut arl assumption about the

stationarity  of the underlying stw;t ~:tstic  process would exclude from consideration

such important components of ttw dyf mrnical  proms as linear and pohofnial,

trends, or harmonic oscillaliorw.  ‘I Imt is why we have to deal with non-stationary

processes.

Our approach to building;; d,jr Ian lid model is based upon progress in three

ir~dependent  fields: nonlinear dynarnlcs,  thecwy of stochastic processes, and

artificial neural networks.

From the field of nonlinear  cfyr~:~rnim, based upon the “I”akens  theoremPl,  any

dynamical system which c:orwwgcx t(.) an attractor of a lower (than original)

dimensionality  can be simulntcd (~’itt}  ii prescribed accuracy) by a time-delay

equation

in which x(t) represents a given Iirrl(>  set IOS, and T = Cor]stant  is the time delay.

(1),



It was proven that ttm s(didion  tcl Uq.(1 ) subject to appropriate initial

conditions converges to ttw otigirlal  till m series:

x(i) = X(/l), x(i2).  . . .dc ( 2 )

when m in(l) is sufficiently lal ge.

However, the function f’, i;~ well as ttw constant z and m, are not specified

by this theorem.

But the most “darnagir}g’ Iimilatmn  of the model (1) is that the original time

series must be stationary, sir}cm it ri!ptesor~ts  an attractclr.  1 his impies that for non-

stationary time series the scdution to (1 ) r-nay nc)t cxmverge  to (2) at all.

Previously statistitic)rw  I EWe de wdoped a c~ifferent  approach to the same

problem[4]:  they approximated a SIOC! mstic process by a linear autoregressive

model: ,

x(l) = al x(I -- 1) + a2r(/ ?)-:. + Ci, (xr - n) + N (3)

where ai are constants, and N rep! eset ds the contribution c)f a noise.

On first sight, Eq.(3) a[lpe;irs  ;:s a particular case of E.q.(1 ) when F is

replaced by a linear function, w“d I, ‘ 1. t {owewx, it actually has an important

advantage over Eq.(1 ): it does IKII  onf~~rce  stationarity  of the time series (2). To

be more precise, it requires certair~ tran:+formaticms  of (2) before the model can be

applied. 1 hese transformations we S( Jpposed to “stationariz.e” the original time

series. These types of trat]sf[)rr~-l:~ticjr~!,  fcdlcw from the fact that the conditions of

stationarity  of the solution to [: q (3) cclin:ide with the c~mditions  of its stability, i.e.

the process is non-stationary w} WI  II



I(;,I > 1 (4)

:.

where Gi are the roots of the c1 mractoris.tic  equation associated with Eq.(3).

The case I Gil >1 is usually cwckd[?d frcxn cxmsidcxatiorls  since it corresponds

to an exponential instability wllicl~  i:+ unrealistic in physical systems under

observation. However, the case I G, I‘ 1 IS realistic. Real and complex conjugates

Gj incorporate trend and seasow~l  cxm?~  wnents, respectively, into the time series

(2).

By applying a difference opwato~.

VX, =XI-X, .,=(l-IJ)Y, (5)

several times (where B is ttw N tift cymr[itor), cme can eliminate the trend from the

time series:

Xp x, - ~,...elc

By applying a seasonal diflwerwc  c)pet ator.

V,x,’-(l  - B’)x, =’ x,.,

(6)

(7) ‘

one can eliminate the seascmal  c<m ~por writs from the time series(6).

Unfortunately, it is not kt )CMW in ticivanc%  how many times the operators (5)

or (7) should be applied tc) the clri{.~ir~:il time series (6) for their stationarization.

Moreover, in (7) the period S cd it w seasonal  cjifference  operator is also not

prescribed. In the next sect ic)l  I we wili discuss possible ways to deal with these
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problems. Assuming that tt w till m sw ies (6) is staticmariz.ed,  one can apply to them

the model (1):

y(t) = l’~y(i - 1), Y(I - ?),,.., ,+)(/ ni;l ] (8)

where

Y,lY, ]> . . . ..elc.  (y, = x, -- 1, - ,) (9)

are transformed series (6)1 and T = 1,

After fitting the model (8) to ttw tilno s(~ries (6), one can return to the old variable

x(t) by exploiting the invel  so o~K~,ratois  (1 -[3)-1 and (1 -Bs )1. For instance, if the

stationarization procedure is p[:rfcwtw[i by the c}perator  (5), then:

x(l) = X(1 - 1) + }’” {[X(I 1 ) X(I - 2)], [X(1 - 2.) - X(I - 3)] . . ..ek} (lo)

Eq.(1 O) can be utilized for pI [xiic:tiol  IS of future values of (6), as well as for

detections of structural at)r~orrll:~l~l,ic>s,  I {owcxmr, ciespite  tlw fact that Eq.(8) and

(10) may k]e significantly cliffer[?l  d, tl wi~ structure is uniquely defined by the same

function F. Therefcwe,  strucAjral  ;)t~r~orrrl;llities  wt~ich cause changes of the function

F, can also be detected frcxn  I c~ ([!) at d Ccmsequently  for that particular purpose

the transition to Ec~. (10) is rmt rw[x:ss;;  ry.

I t  should be noticxxl  It};jt, S! I ictly sIwaking  tlw application of the

stationarization prc)cedure (5) and (“/ ) to the time series (6) are justified only if the

underlying model is linear. }Iowevcr , :Micmarity  miteria nonlinear equations are,.

more complex than for linear C)t IeSj ill tl w same way as the criteria of stability are.

Nevertheless, there are numc]r ic<;l ovidencxs thal even in nonlinear cases, the

procedures (5) and (7) are usdul  In a sense that

errc)$n, i.e. the difference botwecrl llK! s!lrwlated and

are non-stationary.

they significantly reduce the

the recorded data if the latter



3. .Model Fittinq

The models (8) and (10) WI ~icl~ hi we been selected in the previous section ~

for detection of structural of atm)rl ni]lit i(:s in the time s(?ries (6), have the following

parameters to be found from (6): t}I{: fl~rl~.[;on  I , the time delay T, the order of time

delays m, the powers ml ar]ci rr} uf the ciifference  (1-B )m and the seasonal

differerma (1 - B’)m and the pm ioci S of the seascmal  operator.

If the function F is linear, the siml  ~lest approach to rnc)del fitting is the Yule-

Walker equations~ which dcfmes  th{> auioregressivepparamoter ai in Eq.(3) via the

autocorrelations  in (6). However, ir I nw’ Iy cases  the assumption about linearity of

the underlying dynamical system lkxjcls.  to poor model fitting, and therefore, it is

more practical to assume from tl~[! begirming that F- is a nonlinear (and still

unknown) function. In suctt a poscdness, probably, the best tool for model fitting

is a feed-forward neural net wt]ic;l~  approximates the true extrapolation mapping by

a function parametrized by tl-m synapl  [c weights anti thresholds of the network’

There is a rigorous proo@ that ar~y cm!lnuous  function can be approximated by a

feed-forward neural net with ordy wlc; I Iidderl layer, and that is why in this work a

feed-fotward neural net with cmc hidd[m klyer was selected for the model (8) fitting.

The model (8) is sought in the folkwing form:

(11)

where W~ and WE are constarlt syI ~:~pl,ic  weights, o (x) =’ tanhx is a sigmoid function,

and y(t) is a function which is sui ymsod  to approximate the stationarized  time series

(9) transformed frc)m the cwiginal  t ~rl w series,

Tho model fitting procmduro  is t}zw?d upor 1 minimizaticm  of the error measure:,
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(12)

where yPl(t) are the values of tlw ti~no s[lries (9).

The error measure (12) ropf cserds the contribution of random components

in the time series. There arc two tmstc sources c~f such components. The first

source is chaotic instability y of tl w (W ldcriying dynamical system; in principle, this

component can be detected by ap~>lyir~g  the stak]ilization  principle{51.  The second

source is physical noise, imprcc,isicm  of tt]e measurements, or human factor (such

as multi-choice decisions iri wclr]clrrliwl  cx social  systems). l-his component can

be identified by applying a spcc!;Il  ty~ m of dynamics (called terminal, or non-

l.ipschitz-dynarnics)rq.

In this paper we will assLmw ttm!  E represents a variance of a mean zero,

(.;aussian  noise.

Since there is an explicil  a(ml+ic~l  dependence betvwen E and Wij , wj~, the

first part of minimization can t:m prcfcmnwi by applying back+ropagation.  However,

further minimization should itmludo rrmrc sophisticated versicms  of gradient decent

since the dependence E (_f, m, rl 1.,, W7, s) is too czwnplex  to be treated analytically.

As noted in the introducticm,  tlwr[!  are twc) causes for abncwmal behavior in

the solution to Eq.(fi  1 ): cl ~fir~ges  it I e>ternal fcmes or initial cxmditions  (these

changes can be measured by 1 ya~ ILwov stability and associated with operational

atmorrnalities), and changes i[~ hc p:~r~m~i!ters  Wy , WP:, i.e. changes in the structure

)



of the function F in Eq.(8). (l-his d IIW ig{!s are measured by structural stability and

associated with structural at.mw fnaldies)l  arlci changes in the parameters Wij,

i.e. changes in the structuro of ttw fl~r~cticm 1’ in Eq. (8). (’T”hese changes

measured by structure stat}  ilily md ass{miatod  with structural abnormalities)

‘jk,

are

In this paper we introducm th(? foll:!wing rrwasure for structural abnormalities:

(13)

where Wti and Wjk, are the rlcm’lirml,  c~r “t malthyn valup~ of h.? parameters, and W,i,

wj~, are their current values, OtwiolJslyl  if

~=o,or(<l~l

where e is sufficiently small,  tl][!rl th[?re is rlcj structural abnormalities.

advantage of this criterion is irl its sirn~)licity:  it can be periodically updated,

therefore, the structural “health” cd tlm I lrocc?ss  can be easily mcmitored.

,’

(14)

The

and

The only limitation of this ct ilw i~m is that it does not specify a particular

cause of an abnormal behavic)r, ot]viously,  ttlis limitation can be removed by

monitoring each parameter Wlj,  \Vjk, sop{~rately.

The methodology prwsw ded it I this paper has been applied to simulate the

dynamics of Voyager solar presw o t.msed upon the sensor data, The reference

distribution of this data is show} ir~ f ig 1. ‘rt~e original data first required two

simple differencing  passes fcw Mdicmiriz  ;~tior]  (Fig.?). l-his clata was fed then into

the network at which point the f[xxi-f{wv~ard  rmural network learned the structural

parameters of the system within two window iterations where a window consisted

8



of approximately 100 data points. Irt tl~is neural system, the simulated data was

fitted into the stationarizcd  cial;i  witl~ :: convergence? parameter value of 1 and a

total of 20 neurons in the hidden ltJym. Frmn fig. 3, we can see that the model

simulations closely represcn! tt }e w:iu:~l  Voyager data.

Since there is no a[ymr[:r~t stru((urat abnormalities in the original data, we

therefore perform a procedure to t~~sl  it m swwitivit  y fc)r the parameter when faced

with structural abnormalities. ‘1 t]is consists  stretching in time the last third of the

original data and running tt~e altw e~~ dida set through the neural system (Fig. 4).

From Fig. 5, the structural c1 wng(! was immediately detected by a sharp change

in the < parameter. Thus tlw syston~  becxmes highly sensitive for detecting

structural abnormalities.

7. Concluding Remarks

A combined feed-forward ncx.lr ~4-rwtwork  and nonlinear dynamics approach

to modeling stationary and nclrl slat ionr~r y time series was investigated. It was

demonstrated that preliminary $;t~:l!i[}rl~~rizatic)n  of the original data significantly

improves the accuracy of sit nulatic)!  is. A simple and reliable criterion of structural

abnormalities was introduced ar d ~~jlidi:t~~d.
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